跳转至

4.不定积分

4.不定积分

4.1.运算符

\[ \int {F}'(x)dx=F(x)+C \]
\[ {F}'(x)dx=d(F(x)+C) \\ {\scriptsize\int=d^{-1}\Longleftrightarrow d\cdot \int =1} \]

4.2.线性性质

\[ \int kf(x)dx=k\int f(x)dx \]
\[ \int [f(x)\pm g(x)]dx=\int f(x)dx\pm\int g(x)dx \]

4.3.第一类换元积分

\[ \int f(u){u}'dx=\int f(u)du=F(u)+C \]

4.4.第二类换元积分

\(f(x)=g(t),t=t(x),\)则有:

\[ \int f(x)dx=\int g(t)dt^{-1}(t)=\int g(t){(t^{-1}(t))}^{'}dt \]

4.5.分部积分

已知:\(d(uv)=udv+vdu,\)则有:

\[ \int uv=\int udv+\int vdu \]

4.6.基本积分表及推导

4.6.1.

\[ I_1=\int \tan xdx=\ln {|\frac{1}{\cos x}|}+C \tag*{4.6.1} \]

4.6.2.

\[ I_2=\int \cot xdx=\ln |\sin x|+C \tag*{4.6.2} \]

4.6.3.

\[ I_3=\int \sec xdx=\text{arcth}(\sin x)+C \tag*{4.6.3} \]

4.6.4.

\[ I_4=\int \csc xdx=\text{arcth}(-\cos x)+C \tag*{4.6.4} \]

4.6.5.

\[ I_5=\int \frac{1}{\sqrt{a^2-x^2}}dx=\arcsin \frac{x}{a}+C \tag*{4.6.5} \]

4.6.6.

\[ I_6=\int \frac{1}{\sqrt{a^2+x^2}}dx=\text{arcsh}\ \frac{x}{a}+C \tag*{4.6.6} \]

4.6.7.

\[ I_7=\int \frac{1}{a^2+x^2}dx=\frac{1}{a}\arctan \frac{x}{a}+C \tag*{4.6.7} \]

4.6.8.

\[ I_8=\int \frac{1}{a^2-x^2}dx=\frac{1}{a}\text{arcth}\ \frac{x}{a}+C \tag*{4.6.8} \]

证明


4.6.1

证明: $$ I_1=-\int \frac{1}{\cos x}d(\cos x)=\ln {|\frac{1}{\cos x}|}+C $$


4.6.2

证明: $$ I_2=\int \frac{1}{\sin x}d(\sin x)=\ln |\sin x|+C $$


4.6.3

证明: $$ I_3=\int \sec xdx =\int \frac{1}{{\text{cos}}^2x}d(\sin x)=\int \frac{1}{1-\text{sin}^2x}d(sinx) $$ 又: $$ \frac{1}{1-\text{sin}^2x}=\frac{1}{2}(\frac{1}{\sin x+1}-\frac{1}{\sin x-1}) $$ 所以: $$ I_3=\frac{1}{2}(\int \frac{1}{\sin x+1}d(\sin x+1)-\int \frac{1}{\sin x-1}d(\sin x-1))\ $$

\[ I_3=\ln \sqrt {\frac{1+\sin x}{1 -\sin x }}+C=\text {arcth}(\sin x)+C \]

又: $$ \frac{1+\sin x}{1-\sin x}=\frac{{(\sin \frac{x}{2}+\cos \frac{x}{2})}^2}{{(\sin \frac{x}{2}-\cos \frac{x}{2})}^2}={(\frac{1+\sin x}{\cos x})}^2={(\sec x+\tan x)}^2\ $$ 所以: $$ I_3=\int \sec xdx=\ln {|\sec x+\tan x|}+C $$


4.6.4

4.6.3变换: $$ I_4=\frac{1}{2}(\int \frac{1}{\cos x-1}d(\cos x-1)-\int \frac{1}{\cos x+1}d(\cos x+1))=\ln \sqrt {\frac{1-\cos x}{1+\cos x}}+C=\text{arcth}(-\cos x)+C $$ 又: $$ \sqrt{|\frac{1-\cos x}{1+\cos x}|}=|\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}|=|\frac{2\text{sin}^2\frac{x}{2}}{\sin x}|=|\frac{1-\cos x}{\sin x}|=|\csc x-\cot x| $$ 所以: $$ I_4=\int \csc xdx=\ln {|\csc x-\cot x|}+C $$


4.6.5

证明: $$ I_5=\int \frac{1}{\sqrt{1-{(\frac{x}{a})}^2}}d\frac{x}{a}=\arcsin \frac{x}{a}+C $$


4.6.6

证明: $$ I_6=\int \frac{1}{\sqrt{1+{(\frac{x}{a})}^2}}d\frac{x}{a} $$ 令:\(\frac{1}{\sqrt{1+{(\frac{x}{a})}^2}}=\sin \theta,\frac{x}{a}=\cot \theta\)

即: $$ I_6=\int \sin \theta d\cot \theta=-\int \csc \theta d\theta=-\ln {|\csc \theta-\cot \theta|}+C $$ 又: $$ \csc \theta=\sqrt{1+{(\frac{x}{a})}^2},\cot \theta=\frac{x}{a}。 $$ 所以: $$ I_6=\ln {|\sqrt{1+{(\frac{x}{a})}^2}+{(\frac{x}{a})}^2|}+C=\text{arcsh}\ \frac{x}{a}+C $$


4.6.7

证明: $$ I_7=\frac{1}{a}\int \frac{1}{{(\frac{x}{a})}^2+1}d(\frac{x}{a})=\frac{1}{a}\arctan \frac{x}{a}+C $$


4.6.8

证明: $$ I_8=\frac{1}{a}\int \frac{1}{{(\frac{x}{a})}^2-1}d\frac{x}{a} $$ 令:\(\frac{1}{{(\frac{x}{a})}^2-1}=\text{tan}^2\theta,\frac{x}{a}=\csc \theta\)

则有: $$ I_8=\frac{1}{a}\int \text{tan}^2\theta\csc \theta=-\frac{1}{a}\int \sec \theta d\theta=-\frac{1}{a}\ln {|\sec \theta+\tan \theta|}+C=\frac{1}{a}\ln \sqrt{\frac{a+x}{a-x}}+C=\frac{1}{a}\text{arcth}\frac{x}{a}+C $$