跳转至

1.导数与微分


1.1.偏导数

对于二元函数\(z=f(x,y)\), 规定其在固定方向上的导数为偏导数

其中在\(x\)方向上的偏导数记作\(\frac {\partial f}{\partial x}\),在\(y\)方向上的偏导数记作\(\frac {\partial f}{\partial y}\)

  • 高阶偏导数

按照求导变量顺序的不同,存在如下偏导数:

\[ \frac {\partial ^{2} f}{\partial x^{2}}, \frac {\partial ^{2} f}{\partial y^{2}}, \frac {\partial ^{2} f}{\partial x \partial y}, \frac {\partial ^{2} f}{\partial y \partial x} \]

有如下定理:

\[ 若函数z=f(x,y)在区域D上连续且\frac {\partial ^{2} f}{\partial x \partial y}与\frac {\partial ^{2} f}{\partial y \partial x}在区域D上存在且连续,则\frac {\partial ^{2} f}{\partial x \partial y}=\frac {\partial ^{2} f}{\partial y \partial x}。 \]

1.2.全微分

考虑曲面\(z=f(x,y)\)\((x_{0}, y_{0}, z_{0})\)存在切平面\(\pi :Ax+By+Cz+D=0\),其法方向为:\(\vec {r}\)。则存在\(\vec {\alpha}=(1,0,\frac {\partial f}{\partial x}|_{x=x_{0}}), \vec {\beta}=(0,1,\frac {\partial f}{\partial y}|_{y=y_{0}})\),使得\(\vec {\alpha} \parallel \pi, \vec {\beta} \parallel \pi\),则有:

\[ \vec {r} = \vec {\alpha} \times \vec {\beta}=(\frac {\partial f}{\partial x}|_{x=x_{0}}, \frac {\partial f}{\partial y}|_{y=y_{0}}, -1) \]

\((x_{0}, y_{0}, z_{0})\)处的切平面\(\pi\)的点法式方程为:

\[ \vec {r} \cdot \begin{pmatrix} x-x_{0} \\ y-y_{0} \\ z-z_{0} \end{pmatrix}=0 \Longrightarrow z-z_{0}=\frac {\partial f}{\partial x}|_{x=x_{0}} (x-x_0)+\frac {\partial f}{\partial y}|_{y=y_{0}}(y-y_{0}) \]

\(x \to x_{0}, y \to y_{0}\)时:

\[ dz|_{z=z_{0}}=\frac {\partial f}{\partial x}|_{x=x_{0}}dx+\frac {\partial f}{\partial y}|_{y=y_{0}}dy \]

因此有全微分公式:

\[ dz=\frac {\partial f}{\partial x}dx+\frac {\partial f}{\partial y}dy \]

1.3.复合多元函数的导数与微分

如果多元函数函数\(z=f(\lambda , \mu)\),其中\(\lambda=\phi(t), \mu=\psi(t)\),则\(z\)关于\(t\)的导数:

\[ \frac {dz}{dt}=\frac {\partial f}{\partial \phi}\frac {d\phi}{dt}+\frac {\partial f}{\partial \psi}\frac {d\psi}{dt} \]

\(\lambda=\phi(x, y), \mu=\psi(x, y)\),不妨令\(z=g(x, y)\),则有:

\[ dz=\frac {\partial f}{\partial \phi}d\phi+\frac {\partial f}{\partial \psi}d\psi \]

又:

\[ d\phi=\frac {\partial \phi}{\partial x}dx+\frac {\partial \phi}{\partial y}dy \]

$$ d\psi=\frac {\partial \psi}{\partial x}dx+\frac {\partial \psi}{\partial y}dy $$ 所以:

\[ dz=(\frac {\partial f}{\partial \phi}\frac{\partial \phi}{\partial x}+\frac {\partial f}{\partial \psi}\frac{\partial \psi}{\partial x})dx+(\frac {\partial f}{\partial \phi}\frac{\partial \phi}{\partial y}+\frac {\partial f}{\partial \psi}\frac{\partial \psi}{\partial y})dy \]

又:

$$ dz=\frac {\partial g}{\partial x}dx+\frac {\partial g}{\partial y}dy $$ 则\(z=g(x, y)\)偏微分:

\[ \frac {\partial g}{\partial x}=\frac {\partial f}{\partial \phi}\frac{\partial \phi}{\partial x}+\frac {\partial f}{\partial \psi}\frac{\partial \psi}{\partial x} \]
\[ \frac {\partial g}{\partial y}=\frac {\partial f}{\partial \phi}\frac{\partial \phi}{\partial y}+\frac {\partial f}{\partial \psi}\frac{\partial \psi}{\partial y} \]

1.4.隐函数求导

二元隐函数通常由方程\(F(x, y)=0\)确定。若在\((x_{0}, y_{0})\)邻域内具有连续偏导数,则有链式法则:

\[ dF(x, y(x)) = \frac {\partial F}{\partial x}dx+\frac{\partial F}{\partial y}dy \]

又:

\[ \frac{dF(x, y)}{dx}=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}\frac{dy}{dx}=0 \]

故隐函数方程\(F(x, y)=0, y关于x的导数\)为:

\[ \frac{dy}{dx}=-\frac{{F_{x}}^{'}}{{F_{y}}^{'}} \]

推广至多元函数,例如三元隐函数方程\(F(x, y, z(x, y))=0\),有链式法则:

\[ dF=\frac{\partial F}{\partial x}dx+\frac{\partial F}{\partial y}dy+\frac{\partial F}{\partial z}dz \]

又有:\(z=z(x,y),dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy\),因此:

\[ dF=(\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z}\frac{\partial z}{\partial x})dx+(\frac{\partial F}{\partial y}+\frac{\partial F}{\partial z}\frac{\partial z}{\partial y})dy \]
\[ \frac{dF}{dx}=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z}\frac{\partial z}{\partial x}=0 \]

因此有:\({F_{x}}^{'}+{F_{z}}^{'}\frac{\partial z}{\partial x}=0,即:\frac{\partial z}{\partial x}=-\frac{{F_{z}}^{'}}{{F_{x}}^{'}}\)。同理有:\(\frac{\partial z}{\partial y}=-\frac{{F_{z}}^{'}}{{F_{x}}^{'}}\)


1.5.方向导数与梯度

  • 方向导数

讨论二元函数\(z=f(x,y)\)\((x_0,y_0,z_0)\)处的切平面\(\pi\)(若此处偏导数存在)由向量\(\vec{\alpha}=(1,0,\frac{\partial f}{\partial x}),\vec{\beta}=(0,1,\frac{\partial f}{\partial y})\)确定。则平行于切平面\(\pi\)的任意方向向量\(\vec{l}\)都可由基向量\(\vec{\alpha},\vec{\beta}\)的线性组合表示:

\[ \mathbf{l}=\lambda \mathbf{\alpha}+\mu \mathbf{\beta}=(\lambda,\mu,\lambda\frac{\partial f}{\partial x}+\mu \frac{\partial f}{\partial y}) \]

定义\(z=f(x,y)\)\(\mathbf{l}\)方向的方向导数:

\[ \frac{\partial f}{\partial l}=\frac{\lambda}{\sqrt{\lambda^2+\mu^2}}\frac{\partial f}{\partial x}+\frac{\mu}{\sqrt{\lambda^2+\mu^2}}\frac{\partial f}{\partial y} \]

由定义可知,\(z=f(x,y)\)\(x\)轴方向的方向导数为\(\frac{\partial f}{\partial x}\),在\(y\)轴方向的方向导数为\(\frac{\partial f}{\partial y}\)。描述了\(z=f(x,y)的(x_0,y_0,z_0)处\mathbf{l}\)方向上的变化量

  • 梯度

不妨将函数\(z=f(x,y)\)\((x_0,y_0,z_0)\)点在\(\mathbf{l}\)方向上的方向导数视作以下内积形式:

\[ \frac{\partial f}{\partial l}=(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})\cdot(\frac{\lambda}{\sqrt{\lambda^2+\mu^2}},\frac{\mu}{\sqrt{\lambda^2+\mu^2}})^T=(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})\cdot \mathbf{e_l} \]

其中\(\vec{e_l}\)\((x_0,y_0,z_0)\)\(\vec{l}\)方向上的单位向量。定义函数\(z=f(x,y)\)的点\((x_0,y_0,z_0)\)处的梯度为:

\[ \nabla f(x,y)=(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}) \]

重新审视方向导数的内积形式:

\[ \frac{\partial f}{\partial l}=|\nabla f(x,y)|\cdot |\mathbf{e_l}|\cos{\theta} \]

其中\(\theta\)是单位方向向量\(\mathbf{e_l}\)与梯度\(\nabla f(x,y)\)的夹角。

要使在\(\mathbf{l}\)方向上的变化率最大,\(\cos{\theta}=1\),即方向单位向量\(\mathbf{e_l}\)与梯度\(\nabla f(x,y)\)平行。