跳转至

8.2.Jacobi矩阵与全微分


2.1.向量集映射与Jacobi矩阵

考虑向量集函数\(\mathbf{z}=f(\mathbf{v}),\mathbf{v}=(x,y)^{\mathbf{T}}\)\((x_0,y_0)\)处微分:

\[ f(\mathbf v+\mathbf h)-f(\mathbf v)=J\cdot\mathbf h+o(||\mathbf h||),\mathbf h \to \mathbf 0 \]

其中\(o(||\mathbf h||)\)\(||\mathbf h||\)的高阶无穷小,因此\(f(\mathbf v)\)\((x_0,y_0)\)处任意方向\(\mathbf h\)的增量可近似于增量\(\mathbf h\)的线性函数:

\[ \text{d}f(\mathbf v)=J\cdot\mathbf h \]

对于更为具体的向量集函数\(F(x,y)=(P(x,y),Q(x,y))^{\mathbf T}\),其微分可表示为:

\[ \text{d}F(x,y)= \begin{pmatrix} \text{d}P\\ \text{d}Q \end{pmatrix} =\begin{pmatrix} \nabla P\\ \nabla Q \end{pmatrix}\cdot\mathbf h= \begin{pmatrix} P_x & P_y\\ Q_x & Q_y \end{pmatrix}\cdot\mathbf{h} \]

因此我们确定二维向量集函数\(\mathbf{z}=f(\mathbf{v})\)的Jacobi矩阵:

\[ J=\begin{pmatrix} P_x & P_y\\ Q_x & Q_y \end{pmatrix} \]

对于二维值函数\(z=f(x,y)\),有\(\text{d}z=\nabla f\cdot\mathbf{h}\)\(\nabla f\)为值函数\(z=f(x,y)\)的Jacobi矩阵,被视为一个二维向量向量到值的映射。


2.2.链式法则的Jacobi矩阵形式

对于二维的复合值函数\(z=F(u(x,y),v(x,y))\),其微分为:

\[ \text{d}z=\nabla F\cdot \begin{pmatrix} \text{d}u \\ \text{d}v \end{pmatrix}= \nabla F \cdot \begin{pmatrix} \nabla u \\ \nabla v \end{pmatrix}\cdot \begin{pmatrix} \text{d}x \\ \text{d}y \end{pmatrix}= \nabla F\cdot \begin{pmatrix} u_x & u_y\\ v_x & v_y \end{pmatrix}\cdot \begin{pmatrix} \text{d}x \\ \text{d}y \end{pmatrix} \]

对于更为普遍的复合函数,链式法则展示了一种\(n\)维向量通过对应Jacobi矩阵的一种链式映射关系。

如上述的复合函数\(z=F(\lambda(x,y),\mu(x,y))\),可视为下述的链式映射:

\[ \begin{pmatrix} \text{d}x\\ \text{d}y \end{pmatrix} \stackrel{J_{(u,v)}}{\longrightarrow} \begin{pmatrix} \text{d}u\\ \text{d}v \end{pmatrix} \stackrel{J_F}{\longrightarrow} \text{d}z \]

2.3.隐函数与隐映射

  • 隐函数:

对于隐函数\(f(x_1,x_2,x_3)=0\),可以确定唯一的映射:\(x_i=x_i(x_j,x_k)\)。对函数\(f\)微分:

\[ \text{d}f=\nabla f\cdot \begin{pmatrix} \nabla x_1 \\ \nabla x_2 \\ \nabla x_3 \end{pmatrix}\cdot \begin{pmatrix} \text{d}x_1 \\ \text{d}x_2 \end{pmatrix}= \nabla f\cdot \begin{pmatrix} I\\ \nabla x_3 \end{pmatrix}\cdot \begin{pmatrix} \text{d}x_1 \\ \text{d}x_2 \end{pmatrix} \]

解出\(\nabla x_3\)

\[ \nabla f_{(x_1,x_2)}+\frac{\partial f}{\partial x_3}\nabla x_3=0 \]

即:\(\nabla x_3=-{(\frac{\partial f}{\partial x_3})}^{-1}\nabla f_{(x_1,x_2)}\)

  • 隐映射:

对于隐函数方程组:

\[ \left\{ \begin{matrix} F_1(x,y,u,v)=0 \\ F_2(x,y,u,v)=0 \end{matrix} \right. \]

可以确定唯一隐映射:

\[ \left\{ \begin{matrix} u = u(x,y) \\ v = v(x,y) \end{matrix} \right. \]

\(F_1,F_2\)微分:

\[ \left\{ \begin{matrix} \text{d}F_1=\nabla F_1\cdot J_{(u,v)}\cdot\mathbf{h} \\ \text{d}F_2=\nabla F_2\cdot J_{(u,v)}\cdot\mathbf{h} \end{matrix} \right. \]

不妨写作以下形式:

\[ \text{d}\mathbf{F}= \begin{pmatrix} \text{d}F_1 \\ \text{d}F_2 \end{pmatrix}= \begin{pmatrix} \nabla F_1 \\ \nabla F_2 \end{pmatrix}\cdot J_{(u,v)}\cdot\mathbf{h}= J_F\cdot J_{(u,v)} \cdot \mathbf{h} \]

由于微分的形式不变性,对\(\mathbf F\)的微分依然可以视作对应Jacobi矩阵的链式映射法则:

\[ \begin{pmatrix} \text{d}x\\ \text{d}y \end{pmatrix} \stackrel{J_{(u,v)}}{\longrightarrow} \begin{pmatrix} \text{d}\lambda\\ \text{d}\mu \end{pmatrix} \stackrel{J_F}{\longrightarrow} \text{d}\mathbf F \]

不妨将\(J_F\)分块为:\((J_{F_{(x,y)}}\ \ \ J_{F_{(u,v)}}),|J_F|\ne 0\),有:

\[ \text{d}\mathbf{F}= \begin{pmatrix} J_{F_{(x,y)}} & J_{F_{(u,v)}} \end{pmatrix}\cdot \begin{pmatrix} I \\ J_{(u,v)} \end{pmatrix}\cdot \mathbf{h}= (J_{F_{(x,y)}}+J_{F_{(u,v)}}J_{(u,v)})\cdot\mathbf{h} \]

解出\(J_{(\lambda,\mu)}\)

\[ J_{(u,v)}=-{(J_{F_{(u,v)}})}^{-1}J_{F_{(x,y)}} \]

2.4.曲面参数化与Jaccobi行列式

对于光滑且连续的曲面\(\Omega\),其自变量\(x,y\)可作参数化表示:\(x=P(u,v),y=Q(u,v)\),可视作\(x,y\)关于\(u,v\)的向量场\(\mathbf{z}=\mathbf{F}(u,v)\)。对于\(\text{x}o\text{y}\)平面上任意一点,\(J\)可视作对该点处邻域的线性变换。即:\(\text{d}\mathbf{z}=J\text{d}\mathbf{h}\),此处面积微元:

\[ \text{d}\sigma=\text{d}x\text{d}y=\text{det}J\cdot\text{d}u\text{d}v \]
  1. 极坐标
\[ \left\{ \begin{matrix} x = r\cos\theta \\ y = r\sin\theta \end{matrix} \right. \]

可表示为:\(\text{d}\mathbf{z}=J\text{d}\mathbf{h}(r,\theta)\)。其中:

\[ J=\begin{pmatrix} \cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta \end{pmatrix}, \text{det}J=r \]

故有:

\[ \text{d}\sigma=\text{d}x\text{d}y=r\text{d}r\text{d}\theta \]
  1. 球坐标
\[ \left\{ \begin{matrix} x = r\sin\theta\cos\phi \\ y = r\sin\theta\sin\phi \\ z = r\cos\theta \end{matrix} \right. \]

可表示为:\(\text{d}\mathbf{\omega}=J\text{d}\mathbf{h}(r,\theta,\phi)\)。其中:

\[ J=\begin{pmatrix} \sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi\\ \sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi\\ \cos\theta & -r\sin\theta & 0 \end{pmatrix}, \text{det}J=r^2\sin\theta \]

故有:

\[ \text{d}V=\text{d}x\text{d}y\text{d}z=r^2\sin\theta\text{d}r\text{d}\theta\text{d}\phi \]
  1. 柱坐标
\[ \left\{ \begin{matrix} x = r\cos\theta \\ y = r\sin\theta \\ z = z \end{matrix} \right. \]

可表示为:\(\text{d}\mathbf{\omega}=J\text{d}\mathbf{h}(r,\theta, z)\)。其中:

\[ J=\begin{pmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}, \text{det}J=r \]

故有:

\[ \text{d}V=\text{d}x\text{d}y\text{d}z=r\text{d}r\text{d}\theta\text{d}z \]
  1. 锥面坐标
\[ \left\{ \begin{matrix} x = r\cos\theta \\ y = r\sin\theta \\ z = kr \end{matrix} \right. \]

可表示为:\(\text{d}\mathbf{\omega}=J\text{d}\mathbf{h}(r,\theta, k)\)。其中:

\[ J=\begin{pmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ k & 0 & r \end{pmatrix}, \text{det}J=r^2 \]

故有:

\[ \text{d}V=\text{d}x\text{d}y\text{d}z=r^2\text{d}r\text{d}\theta\text{d}k \]